
Model Trees for Hybrid Data Type Classification

Hsing-Kuo Pao, Shou-Chih Chang, and Yuh-Jye Lee

Dept. of Computer Science & Information Engineering,
National Taiwan University of Science & Technology, Taipei, Taiwan

{pao, M9115009, yuh-jye}@mail.ntust.edu.tw

Abstract. In the task of classification, most learning methods are suit-
able only for certain data types. For the hybrid dataset consists of nom-
inal and numeric attributes, to apply the learning algorithms, some at-
tributes must be transformed into the appropriate types. This procedure
could damage the nature of dataset. We propose a model tree approach to
integrate several characteristically different learning algorithms to solve
the classification problem. We employ the decision tree as the classifica-
tion framework and incorporate support vector machines into the tree
construction process. This design removes the discretization procedure
usually necessary for tree construction and provides the powerful mul-
tivariate decisions. Experiments show that our purposed method has
better performance than that of other competing methods.

1 Introduction

In the real world, the datasets usually include both of the (unordered) nominal
(or discrete) attributes and the numeric (or continuous) attributes. We name
this kind of datasets as hybrid datasets. Most classification learning algorithms
are only suitable for the specified data types. When the undesired data types are
encountered in the dataset, conventionally we transform them into appropriate
types so that the learning algorithm can be proceeded [1–4]. E.g., numeric data
need a discretization process before the typical decision tree induction can be
applied. Sometimes this transformation is artificial and results in changing of
the dataset nature.

To overcome this problem, we employ a novel model tree approach which a de-
cision tree (DT) framework, combining with support vector machines (SVMs) [5,
6] will be used for the classification of hybrid sets. In the tree construction, the
SVMs play a role to replace the discretization procedure and provide a possible
way of extending a univariate decision to a multivariate decision. In an internal
node, before the tree splitting, SVMs will generate a synthetic Boolean attribute
based on the numeric attributes of current training examples in this node, rather
than discretizing the numeric attributes regardless of their interdependencies [1,
3]. When we choose the “best” splitting attribute we consider the original nomi-
nal attributes as well as the synthetic Boolean attribute. If the synthetic Boolean
attribute is chosen as the splitting attribute, it means that the decision node is
a multivariate decision implicitly. Therefore, this strategy extends the ability of



2 Pao et al.

DTs to include multivariate decisions. On the other hand, SVM itself can not
naturally deal with nominal data without create any artificial encodings. Thus,
our proposed model tree, combining the power of DT and SVM will be suitable
to solve classification problem for hybrid datasets.

2 Decision Tree Induction with Hybrid Data Types

DT methods [7–9] are used widely in the fields of machine learning and data
mining. A DT consists of internal and external nodes where an internal node with
several branches represents alternative choices to make based on the (discrete)
values of selected attribute and an external node (a leave) is usually associated
with a single classification label. A prediction is done following the path from
the tree root to a leave, by several branch choosing according to given attribute
values. The typical DT construction adopts the top-down, divide-and-conquer
strategy to recursively build the classification tree [8]. DTs have some advantages
such as easy to interpret, efficient to generate and capable of coping with noisy
data [10, 11]. However, DTs are notorious to be unstable (i.e., high variance).
Often a small change in the training set results in different trees and produces
inconsistent classification results for the same test set. The instability is inherent
because the effect of an error in a top split will be propagated down to all of the
splits below [12]. Some approaches have been proposed by combining multiple
models to improve the accuracy and stability of DT prediction, such as bagging
or boosting [13–15]. Some examples of DT induction are ID3, C4.51, C5.02 [8,
14] and CART [7]. We shall discuss two issues related to DT induction.

2.1 Incorporating Continuous-Valued Attributes

Many real world classification tasks involve nominal and numeric attributes. For
numeric attributes, DTs can not be applied directly unless they are discretized
in advance, i.e., partitioning each of the continuous attributes into disjoint inter-
vals [1]. E.g., an attribute X can be separated as X ≤ c and X > c for the binary
DT. The strategies of discretization is usually categorized by (1) being super-
vised or unsupervised, (2) being global or local, and (3) being static or dynamic,
three options [1, 2, 4, 8, 3]. Most choices are heuristically or empirically decided.
Also, for many of the discretization approaches, the number of intervals is de-
cided arbitrarily. These can lead to low prediction accuracies or inefficient tree
structures, for datasets with hybrid data types or only numeric data types [16, 1,
4, 8]. While many DT inductions are more satisfied for discrete data types than
continuous data types, we adopt SVM for classification in the subspace spanned
by those continuous attributes. In Sec. 4, a combined classifier from DT and
SVM will be introduced to deal with datasets with hybrid types.

1 Some MDL-based discretization for continuous attributes is adopted in certain ver-
sions.

2 A variant of AdaBoost in implemented.



Model Trees for Hybrid Data Type Classification 3

2.2 Univariate and Multivariate Decision Trees

The classical approach for building the DT, such as C4.5, uses an orthogonal (or
axis-parallel) partition at each decision node, so called univariate method [8].
Opposite to that, CART [7] allows for the option of multivariate decisions. For
instance, one check simultaneously involving two attributes X1 and X2, such as
X1+X2 ≤ 6.5 may be operated in a decision node. Clearly, there are cases where
multivariate approach can work efficiently (producing trees with few nodes), but
not for the univariate approach [17, 7, 10, 18–21, 11]3. We introduce SVM for
being capable of multivariate consideration at a node. Other than using a SVM
in each decision node in [22], we adopt the machine only for continuous attributes.
For discrete attributes, the regular ID3 algorithm is applied. By that, we take
advantage of powerful SVM for classification, while not losing the readability of
DT induction. Further discussion is in Sec. 4.

3 Support Vector Machines

We are given a training dataset S = {(x1, y1), . . . , (xm, ym)} ⊆ Rn × R, where
xi ∈ Rn is the input data and yi ∈ {−1, 1} is the corresponding class label. The
aim of SVMs is to find the optimal separating hyperplane with the largest margin
from the training data. Here, “optimal” is used in the sense that the separating
hyperplane has the best generalization for the unseen data based on statisti-
cal learning theory [6]. This can be achieved by solving a convex optimization
problem given as follows:

min
(w,b,ξ)∈Rn+1+m

C
∑m

i=1 ξi + 1
2‖w‖

2
2

s.t. yi(w′xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . ,m,

(1)

where C is a positive control parameter and weights the tradeoff between the
training error and the part of maximizing the margin. We have to point out here,
due to the nature of SVM it is more suitable for numerical data type.

In smooth support vector machine (SSVM) [23], the SVM model (1) is
changed slightly and converted into a unconstrained minimization problem by
utilizing the optimality conditions. These give the SVM reformulation defined
as follows:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(1− yi(w′xi + b))2+ +
1
2
(‖w‖22 + b2), (2)

where the plus function x+ is defined as x+ = max{0, x}. In SSVM, the plus
function x+ is approximated by a smooth p-function, p(x, α) = x + 1

α log(1 +
e−αx), α > 0. By replacing the plus function with a very accurate smooth ap-
proximation p-function gives the smooth support vector machine formulation:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(p(1− yi(w′xi + b), α))2 +
1
2
(‖w‖22 + b2), (3)

3 For the multivariate case, the dividing hyper-surfaces do not need to be linear [22].



4 Pao et al.

where α > 0 is the smooth parameter. The objective function in problem (3) is
strongly convex and infinitely differentiable. Hence, it has a unique solution and
can be solved by using a fast Newton-Armijo algorithm [23]. This formulation
can be extended to the nonlinear SVM by using the kernel trick. We will not
use the nonlinear SSVM in our proposed method because the nonlinear SSVM
tends to overfit the small portion of training dataset in the training process.

In next section, we employ the linear SSVM to deal with the numeric at-
tributes and to generate the corresponding synthetic Boolean attribute for the
training examples at each node.

4 Model Trees

With the description in the previous sections, we know DTs and SVMs have
their own characteristics to deal with different classification problems:

1 Most DTs require a discrete feature space.When DTs encounter the numeric
attributes, a discretization procedure is applied beforehand to divide the
values of numeric attributes into many distinct intervals.

2 On the other hand, SVMs are suitable for the classification of numeric data.
If datasets contain the nominal attributes, some strategies such as encoding
(usually artificial) are applied to transform the nominal attributes into a
series of binary attributes and SVMs read the values of binary attributes as
the integers, 0 and 1.

To flexibly choose the most appropriate method for different types of attributes
and to overcome the limitation of univariate decision for numeric attributes in
DT induction, we propose a new approach which adopts SVM training in the pro-
cess of DT construction. At each node, we use a SVM classification SV M i > 0, in
the subspace spanned by the (whole) numeric attributes to replace the used-to-
be-necessary discretization procedure. Simultaneously, the SVM represents the
possible multivariate decision to improve the efficiency of univariate method.
After the SVM is built, this “multivariate” decision can be considered and com-
peted with the other nominal attributes, based on information gain, gain ratio
or any other goodness criteria. Below, we give the modeling process in detail.

4.1 Building Model Trees

Suppose an example in the hybrid dataset is expressed as the form (XNOM ,
XNUM , Y ), where XNOM , XNUM and Y represent all of the nominal attributes,
all of the numeric attributes and the associated class label, respectively. More-
over, We use the notation, XSV MB , to represent the synthetic Boolean attribute
whose value is assigned by the SSVM classifier and that classifier is built by
the part of numeric attributes and training labels. Furthermore, the gain ratio
criterion is employed to decide the best attribute, among all of the nominal ones
and the synthesized SVM attribute. That is, in each node, we do the following:



Model Trees for Hybrid Data Type Classification 5

Step 1 Using (XNUM , Y ) to build XSV MB . The process consists of three works. The
first work is to search the appropriate weight parameter for the linear SSVM
classifier. That is to say, we split XNUM of training examples into training
set and validation set following the stratification and then decide the appro-
priate weight parameter by them. The second work is to retrain the SSVM
classifier by means of the chosen parameter and (XNUM , Y ) of training ex-
amples. Finally, we use the retrained SSVM classifier, denoted by f(XNUM ),
to generate the corresponding XSV MB according to XNUM of each training
example. If f(XNUM ) > 0, the value of XSV MB is True; otherwise is False.
After the process is finished, a training example is transformed to the new
form, (XNOM , XSV MB , Y ).

Step 2 Using the gain ratio to select the most appropriate splitting attribute from
XNOM or XSV MB . The split with the highest value of gain ratio will be
selected as the attribute. After the splitting attribute is decided, the dataset
is partitioned into two or more subsets accordingly. Note that in order to
avoid the case that our method always chooses the synthetic Boolean at-
tribute which is generated via the SSVM, we confine ourselves in the linear
SSVM. Besides, the weight parameter used in SSVM is determined by a
tuning procedure to avoid the overfitting risk.

If one attribute of XNOM is selected, it means that not only the nominal at-
tribute is more distinguishing than XSV MB but also the decision is univariate.
Oppositely, if XSV MB is selected, it shows that the linear combination of all
numeric attributes has better chance to separate the examples and the decision
node is multivariate implicitly. The process is repeated recursively until some
stopping criterion is met.

5 Experiments

In this section, we test our method on three benchmark datasets from the UCI
repository4 to evaluate its performance. In order to get a fair result, we repeat
four rounds tenfold cross-validation procedure for each experiment. Furthermore,
two popular classification methods, Naive Bayes (NB) and k-nearest-neighbor
(k-NN), are employed to provide the baseline accuracies. Three series of ex-
periments are performed. First, the classification error rates from the different
viewpoints (different parts of attributes) are presented. Then we present the final
comparison results from NB, k-NN, C4.5, SSVM and our model tree method.

Dataset Descriptions In our experiments, we choose three hybrid datasets, Cleve-
land heart disease, Australian and German that include both of the nominal and
numeric attributes from the UCI repository. They are summarized in Table 1.

4 http://www.ics.uci.edu/∼mlearn/MLRepository.html



6 Pao et al.

Dataset Instances # of nominal attr. # of numeric attr. Majority error

Heart 270 7 6 44.44%
Australian 690 8 6 44.49%
German 1000 13 7 30%

Table 1. Summary of Datasets

5.1 Numeric Results and Comparisons

In the experiments, we use the tenfold cross-validation (with stratification) pro-
cedure to evaluate and compare the experiment results. Also, two popular classi-
fication methods, NB and k-NN, are employed to provide the baseline accuracies.
In NB approach, for nominal attributes, NB counts the prior probabilities of the
outcomes with respect to the test example; and for numeric attributes, it as-
sumes that the data has a Gaussian distribution, hence, the probability of the
attribute value can be estimated by the probability density function. Finally,
the class of the test example is assigned by the conditional probability. In k-NN,
for nominal attributes, the distance is zero if the attribute value is identical,
otherwise the distance is one; for numeric attributes, the Euclidean distance is
applied directly. We discuss three series of experiments.

Different viewpoints: nominal attributes In the first series, only nominal at-
tributes are extracted from the dataset. Three learning methods, NB, k-NN and
C4.5 are performed. Appropriate parameter tuning is done for each learning al-
gorithm if there is a need. In this series, k-NN is the most questionable method.
Because it can not reflect the actual distance among different nominal values.
The result is shown in Table 2(a).

Different viewpoints: numeric attributes In the second series, only numeric at-
tributes are extracted. There are five learning methods, NB, k-NN, C4.5, linear
SSVM and Nonlinear SSVM performed. Appropriate parameter tuning is done if
there is a need. In C4.5, the values of the numeric attributes are divided into two
intervals in the local discretization procedure. The result is shown in Table 2(b).
From the first two series, we discover that the results of nominal attributes are
significantly better than the numeric counterparts. Also, it shows that the linear
SSVM performs better than all other methods .

Different methods: all attributes In the third experiment, we compare the error
rates of different methods for hybrid datasets. Because SSVM can only deal with
the numeric attributes, we encode the nominal attributes into a series of Boolean
attributes for SSVM. For example, if the nominal attribute has three possible
values, we encode them as 001, 010 and 100. In model trees, we use the minimum
instances as the early stopping criterion. The number of minimum instances is
determined by a tuning procedure. The final results are shown in Table 3. The
model tree and linear SSVM have the similar accuracies. Moreover, comparing
model trees with C4.5, we find that model trees outperform C4.5 in the Heart
and German, and have the similar accuracy in the Australian.



Model Trees for Hybrid Data Type Classification 7

Classification Method
Dataset Naive k-NN C4.5

Bayes

Heart 21.02 19.81 24.54
Australian 13.73 13.33 14.42
German 25.68 28.20 27.25

(a) only nominal attributes

Classification Method
Naive k-NN C4.5 Linear Nonlinear
Bayes SSVM SSVM

23.33 22.87 25.83 21.76 29.63
28.55 25.83 23.80 23.04 24.35
29.08 33.70 30.13 28.77 28.90

(b) only numeric attributes

Table 2. Classification based only on nominal or numeric attributes (error rates %)

Classification Method
Dataset Naive k-NN C4.5 Linear Nonlinear Model

Bayes SSVM SSVM trees

Heart 16.02 17.78 21.67 13.98 29.81 15.65
Australian 22.90 13.33 13.26 13.38 23.88 12.61
German 25.25 25.95 26.55 24.38 28.98 24.67

Table 3. Classification for hybrid datasets (error rates %)

6 Conclusion

We employed DT as the classification framework and incorporated the SVM
into the construction process of DT to replace the discretization procedure and
to provide the multivariate decision. The main idea of our proposed method
was to generate a synthetic Boolean attribute according to the original numeric
attributes and the synthetic Boolean attribute represented the discriminability
of the numeric attributes. Hence, the multivariate decision could be taken into
account during the selection of next splitting attribute. Finally, the experiment
results showed that model tree has better accuracy than the conventional DT
C4.5. We noted that our method can not avoid the inherent instability of DTs.

Our model tree was not just designed for the SVM method only. Any learn-
ing methods appropriate to apply to numeric attributes such as Fisher’s linear
discriminant function or neural networks could be adopted to form a synthetic
Boolean attribute and the rest induction procedure is the same. We could also
accept more than one such synthesized attributes, thus, more than one learning
algorithms at a time under the framework of DTs. We have to point out that
designing a good tuning process to avoid the overfitting risk is extremely impor-
tant. Otherwise, DTs tend to choose the synthetic Boolean attribute induced
by the learning algorithm which has the overfitting drawback as the splitting
attribute. Besides, the importance of each numeric attribute might change after
splitting. With the viewpoint, we can consider to incorporate the feature selec-
tion method, such as 1-norm SVM, into the process of generating the synthetic
Boolean attribute to select the more informative attributes and to exclude the
linear related attributes. This might upgrade the discriminability of the synthetic
Boolean attribute in the selecting competition with all nominal attributes.

References

1. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretiza-
tions of continuous features. In: Proceedings of the 12th International Conference



8 Pao et al.

on Machine Learning, New York, Morgan Kaufmann (1995) 194–202
2. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous valued at-

tributes for classification learning. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence. (1993) 1022–1029

3. Gama, J., Torgo, L., Soares, C.: Dynamic discretization of continuous at-
tributes. In: Proceedings of the Iberoamericam Conference on AI (IBERAMIA-98),
Springer-Verlag (1998) 160–169

4. Kohavi, R., Sahami, M.: Error-based and entropy-based discretization of continu-
ous features. In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press (1996) 114–119

5. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2 (1998) 121–167

6. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New
York (1995)

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont, CA (1984)

8. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann (1993)
9. Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)

10. Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Machine Learning 19
(1995) 45–77

11. X.-B. Li, Sweigart, J.R., Teng, J.T.C., Donohue, J.M., Thombs, L.A., Wang, S.M.:
Multivariate decision trees using linear discriminants and tabu search. Systems,
Man and Cybernetics, Part A, IEEE Transactions on 33 (2003) 194–205

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer-Verlag, New York (2001)

13. Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of online learning

and an application to boosting. J. of Comp. and Sys. Sciences 55 (1997) 119–139
15. Quinlan, J.R.: Bagging, boosting, and c4.5. In: Proceedings of the Thirteenth

National Conference on Artificial Intelligence and Eighth Innovative Applications
of Artificial Intelligence Conference, AAAI 96, AAAI Press (1996) 725–730

16. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial
Intelligence Research 4 (1996) 77–90

17. Bennett, K., Blue, J.: A support vector machine approach to decision trees (1997)
18. Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: Pro-

ceedings of the 13th Inter. Joint Conf. on AI, San Mateo, CA, Morgan Kaufmann
(1993) 1002–1007

19. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research 2 (1994) 1–33

20. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: Randomized induction of
oblique decision trees. In: Proceedings of the Eleventh Nat. Conf. on AI, Wash-
ington, DC, MIT Press (1993) 322–327

21. Utgoff, P.E., Brodley, C.E.: Linear machine decision trees. Technical report, Uni-
versity of Massachusetts (1991) COINS Technical Report 91-10.

22. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In: Machine Learning,
Proc. of the 13th Inter. Conf. (ICML ’96), Morgan Kaufmann (1996) 252–257

23. Y.-J. Lee, Mangasarian, O.L.: SSVM: A smooth support vector machine. Com-
putational Optimization and Applications 20 (2001) 5–22 Data Mining Institute,
University of Wisconsin, Technical Report 99-03.


